
Making ebooks with
Sigil, HTML and CSS
Training notes for book designers and editors

Arthur Attwell

Making ebooks with Sigil, HTML and CSS

• First published by Electric Book Works on 4 March 2014
• Revised 9 October 2014

© Arthur Attwell 2014

ISBN: 978-1-920218-80-5

All text is licensed under a Creative Commons Attribution-ShareAlike licence
(see creativecommons.org/licenses/by-sa/4.0/).

• Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

• Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same or similar license to this
one.

For information or further permissions, contact Electric Book Works,
electricbookworks.com.

http://creativecommons.org/licenses/by-sa/4.0/
http://electricbookworks.com

Contents
Agenda 6

1 HTML, or ‘How to Talk a Machine’s Language’ 8

2 Stylesheets 14

3 Working with images 23

4 Links 26

5 Metadata 30

6 Tables of Contents 33

7 Covers 35

8 Testing and validation 37

9 On advanced tricks and bug fixing 39

10 Your feedback 40

Course outline
In the course, we cover the following themes in detail, all in the context of
using Sigil to create ebooks.

• An introduction to opening and reading ebooks in ereaders
• An intro to HTML
• Matching HTML to parts of books
• Formatting with CSS
• Working with images
• Links (internal and external)
• Metadata
• Tables of Contents
• Covers
• Testing and validation
• Advanced tricks and bug fixing

Not all of these things are covered in these notes, but you can always read
more just by searching online. No matter how many ebooks you make, you’ll
always hit snags, and searching online is always the fastest way to find
answers. We’ve written about many on the Electric Book Works Knowledge
Base at electricbookworks.com/kb.

Finally, please give us your feedback after the course. You can use the
feedback form in these notes, or just pop us a mail at
info@electricbookworks.com.

http://electricbookworks.com/kb
mailto:info@electricbookworks.com

HTML, or ‘How to Talk
a Machine’s Language’
HTML actually stands for ‘hypertext markup language’, and you’ll
understand why soon. When you make an ebook you are talking to a
machine. That is, you’re making a document that a computer will understand.

Look at this:

Hello, World!

What do we humans call this? Words, a sentence, exclamation, line, phrase,
paragraph, letters, sign, greeting – we have dozens of names for it, and that’s
just if we’re speaking English. To agree on what it is, we need:

• a language (English)
• common terms (like the ones I listed above)

When we tell a computer what Hello, World! is, we also need a language and
common terms. In the ebook world:

• the language is HTML
• common terms include ‘paragraph’, ‘string’, and ‘span’.

To indicate that common term to a computer, we surround our phrase with
special HTML tags. Tags always appear in elbow brackets, like this:

<p>Hello World!</p>

The <p> is a ‘paragraph’ tag. We use paragraph tags at the start and end of
the paragraph, and the slash indicates that the tag is closing the paragraph.
These tags are called ‘markup’, because they mark up our text for the
computer.

html, or ‘how to talk a machine’s language’ 9

Elements
In HTML terms, a paragraph marked up with <p> tags is an ‘element’. The
word ‘element’ would also be useful in traditional book terms for any piece of
a book, and for what we often call ‘features’.

HTML includes a bunch of standard elements. You’ll get to know them very
well, especially these ones:

• <p> for paragraph
• for unordered list (i.e. a bulleted list, but it might not actually have

visible bullets)
• for ordered list (e.g. a 1, 2, 3 or a, b, c list)
• for list item, an item in an ordered or unordered list
• <h1> , <h2> , <h3> , <h4> , <h5> , <h6> for six levels of heading
• for image
• <a> for a clickable link (the ‘a’ happens to stand for anchor)
• for emphasising words (as you might use italics in print)
• for making words stand out (as you might use bold in print)
• for any string of letters you need to mark for any reason (as in,

this span spans three words)
• <div> for division, any block of text or images you need to mark for any

reason
• <table> for a table
• <tr> for a table row
• <td> for a table cell in a row (td stands for table data).

You must know these elements to make ebooks. There are others that are less
important, and you’ll learn about them along the way.

Classes
As you may have guessed, in most books there are several different kinds of
paragraph. In addition to plain body text, there are pull quotes, chapter
openers, notes and more.

10 html, or ‘how to talk a machine’s language’

In HTML we say there are different classes of paragraph. In theory, there are
as many different paragraph classes as you could ever think of. The same goes
for any of the elements I listed:

• lists might be regular bulleted lists, clickable menus, chapter objectives, or
glossary entries;

• images might be portraits, graphs, icons, decorations, or maps;
• spans might mark computer code, important words, proper names, places, or

other special terms;
• divs might mark sections as sidebars, footnotes, or activities.

And much more. We can’t just use <p> for everything, because then every
class of paragraph would look the same.

So HTML lets us invent our own classes, and gives us a way to say what class
an element belongs to. We do this by adding an attribute to the element’s
opening tag. Let’s say we want to call our paragraph a ‘greeting’ paragraph:

<p class="greeting">Hello World!</p>

We could have called the class anything we liked:

<p class="frabjous-day">Hello World!</p>

But of course it’s best to use class names that are easy to remember and
describe their purpose clearly.

ATTRIBUTE STRUCTURE
An attribute in a tag always takes the same form: the kind of attribute (e.g.
class), an equals sign, and the attribute value in quote marks. Another kind of
attribute is an ID, which we cover in Links, later.)

If you’re sharp, you’ll have noticed that none of these elements or
classes describe what the text or image they mark up looks like. They
only describe its function or purpose.

All appearance or formatting is managed separately, in another file called a
stylesheet. We’ll get to that later.

html, or ‘how to talk a machine’s language’ 11

IDs
Elements can have IDs as attributes, too. An ID identifies that particular
element uniquely.

<p id="jiminycricket">This paragraph is the only
one about Jiminy Cricket.</p>

IDs are especially useful when we want to link to specific elements, like a
given paragraph or image. We cover this in the ‘Links’ chapter.

HTML document structure
If you’re using Sigil, you may know already that it lets you view your book in
Book View or Code View. In Book View, things look a lot like a word-
processor: what you type is what your end-user will see. What You See Is
What You Get: WYSIWYG. In Code View, you see all the tags we’ve been
talking about. We say that an ereader renders the code in its intended form.

Now that you know about tags, we can talk about how they’re structured.
Their structure must follow certain rules.

An ebook might contain several HTML documents. Every HTML document is
a separate text file with at least these four parts:

• a namespace declaration
• an <html> element
• a <head> element
• a <body> element.

Don’t worry about the namespace declaration. Sigil puts it in for you at the
top of every file. It’s two or three lines long, and starts with <?xml . This is
important info for the computer, but it’s rare that you’ll need to change it or
even look at it closely.

The <html> , <head> and <body> elements always appear in this
structure:

12 html, or ‘how to talk a machine’s language’

<html>
<head></head>
<body></body>

<html>

That is, the whole document is wrapped inside the <html> element. And
that’s divided into two sections: the <head> element and the <body>
element.

• The <head> contains information for the device about the document.
• The <body> contains all the content of the document intended for human

readers.

There is only ever one <html> , one <head> and one <body> element.
All the tags we discussed earlier (paragraphs, spans, divs, lists, etc.) go inside
the <body> element to make up the document’s content. When you’re
editing ebooks, 99 per cent of your time will be spent there, inside the
<body> element.

XHTML
If you’re looking around in Sigil, you might have noticed that files in most
epubs are in XHTML, not HTML (see the file extensions in the Text folder).
XHTML is essentially a stricter form of HTML, but for our purposes, it’s the
same thing.

html, or ‘how to talk a machine’s language’ 13

Stylesheets
In your HTML documents, your job is to mark up text and images according
to its function or purpose. Never its appearance. All the appearance work is
done in a separate file called a stylesheet. In the stylesheet, for instance, you
get to say what a heading marked <h1> looks like: colour, size, font,
spacing, and so on. This way, you can change and control the appearance of
all the elements in your book in one place, keeping formatting consistent
everywhere.

We create stylesheets in a language called CSS, for Cascading Style Sheets.
(Don’t worry now about how they cascade: that’ll become clear later.) In
Sigil, HTML documents are stored in the Text folder of your epub, and CSS
documents in the Styles folder.

CSS looks different to HTML, because it’s a different language with its own
syntax. Let’s say you want to control the appearance of your default
paragraphs. In CSS, you’d start by typing:

p {}

The p refers to the HTML <p> element, obviously. All your formatting
instructions will go inside the braces, {} . For instance:

p {
font-size: 12pt;
font-family: serif;
}

I’ve put each instruction on its own, new, indented line to make it easier for
us humans to read – the computer doesn’t mind. It’s the same as writing this:

p {font-size: 12pt; font-family: serif;}

But when CSS documents get long and complicated, you really want things
laid out neatly so that you can edit them easily.

Now, what about our classes? Like the ‘greeting’ class we created in <p
class="greeting">Hello World!</p> ? In CSS, we use a full-stop
to indicate ‘in class’, like this:

stylesheets 15

p.greeting {
color: pink;
}

Once we’ve added that, our Hello, World! will show in pink in our
ebook. (Note the American spelling of color . The same goes for
instructions like text-align: center; .)

Open this ebook in Sigil and take a look at the CSS file to see a longer, but
still very simple stylesheet. Note that you can add comments for humans that
the computer will ignore by putting them between /* and */ .

Linking HTML and CSS files
Once you’ve created a CSS file, you have to tell your HTML file where to find
it. That is, you have to link your HTML to the CSS file.

We do this by adding a <link> element inside the <head> section of the
HTML document. Let’s say your CSS file is called styles.css . In Sigil,
your <link> tag will look like this:

<link href="../Styles/styles.css" rel="stylesheet"
type="text/css" />

This link element contains three attributes:

1. <href=…> (href for ‘hyperlink reference’) says where the stylesheet is,
relative to the HTML document (the two full-tops mean ‘go up out of the
Text folder’, and the /Styles/styles.css means ‘go into the Styles
folder and find the styles.css file);

2. rel="stylesheet" says that the file’s relationship to the HTML is that
of a stylesheet;

3. type="text/css" says that the file will be in plain text and in the CSS
language.

NOTE: SELF-CLOSING TAGS
The link element needs only one tag, because it doesn’t mark up, or surround,
any text. So it closes itself with a ‘self-closing slash’ at the end of the tag. Two

16 stylesheets

other common HTML elements that close themselves are the line break
 and the image tag .

Challenge
Here are several things you might want to do with CSS. Pick one, get onto
Google, and take 5 minutes to have a guess how you’d write the CSS:

• make the background of your whole ebook yellow;
• put a paragraph in a box;
• make a paragraph float to one side, with the body text flowing around it;
• make one word appear in a different font to the surrounding text;
• make a heading appear in uppercase, without changing the letters to

uppercase in your HTML;
• create a list inside a list (a sub-list);
• make a numbered list number in roman numerals.

Sample stylesheet
Here is a sample stylesheet. These are styles used for the on-screen version of
these notes. I’ve only included the parts that relate to ebook typography, but
you can see the entire file online at electricbookworks.github.io/ebw-training.
Open the page, right click to view the page source, and click on the CSS file
name.

body {
font-family: "Source Sans Pro", serif;
font-size: 1.2em;
font-weight: 300;
line-height: 140%;

}

/* Headings */

h1, h2, h3, h4, h5, h6 {

stylesheets 17

http://electricbookworks.github.io/ebw-training/

font-weight: 600;
line-height: 120%;
page-break-after: avoid;

}
h1 {

font-size: 3.5em;
max-width: 80%;
line-height: 100%;

}
h2 {

margin: 1.5em 0 0.5em 0;
padding-top: 0.5em;

}
h3 {

margin: 1.5em 0 0.5em 0;
padding-top: 0.5em;

}

/* Paragraphs and related */

p, ul, ol, blockquote, dl {
max-width: 40em;

}
p {

margin: 0 0 0.5em 0;
}
li p { /* a paragraph inside a list item */

margin: 0;
}

/* Blockquotes */

blockquote {
margin: 0.5em 0 0.5em 0;
padding: 0.5em 1em 0.5em 1em;
font-size: 1.5em;
line-height: 120%;

18 stylesheets

border-left: 5px solid #ddd;
max-width: 20em;

}
blockquote p { /* a paragraph inside a blockquote */

margin: 0;
padding: 0;

}
li blockquote { /* a list item inside a blockquote
*/

margin: 1em 0;
}

/* Definition lists, which I use for side-notes */

dl {
color: #666;
border: 1px solid grey;
padding: 1em;

}
dt {

margin: 0 0 0.25em 0;
font-weight: 600;

}
dd {
}

/* Tables */

table {
border-collapse: collapse;

}
th, td {

border: 1px solid #ccc;
padding: 0.5em;

}

/* Code text */

stylesheets 19

pre, code {
font-family: "Source Code Pro", monospace;
white-space: pre-wrap;
background-color: #f9f9f9;
padding: 0.1em 0.3em;
border-radius: 0.2em;
font-weight: 200;
font-size: 0.9em;

}

/* Links */

a {
text-decoration: none;
color: #5f738c;

}

/*
* Title page
*/

.titlepage-title {
font-size: 3em;
font-weight: 700;
margin: 20% 0 0 0;
line-height: 100%;

}
.titlepage-subtitle {

font-size: 3em;
font-weight: 400;
margin: 0 0 1em 0;
line-height: 100%;

}
.titlepage-author {

font-size: 1.5em;
margin: 0 0 2em 0;

20 stylesheets

}
.titlepage-logo {

width: 100px;
}

/*
* Copyright page
*/

.copyright-logo {
width: 100px;
margin: 1em 0;

}

/*
* Table of contents
*/

.toc h2 {
font-weight: 400;
font-size: 1.25em;
margin: 1em 0 0.5em 0;

}
.toc ol {

margin: 0;
padding: 0;

}
.toc ul {

list-style-type: none;
margin: 0 0 1em 0;
padding: 0;

}
.toc li {

margin: 0 0 0.5em 0;
}
.toc a {

stylesheets 21

text-decoration: none;
}

22 stylesheets

Working with images
You are going to want to add or edit images in ebooks often. Luckily, this is
very simple. You can just use Sigil’s Insert > Files… menu. But if you
want to understand what’s going on in your code, here is the more manual
method. To troubleshoot, you’ll need to know this stuff.

Add the image file
First, add the image to the epub’s Images folder. In Sigil, just right-click
the Images folder and select Add Existing Files . Then go find the
image on your computer, and Sigil will copy it to that Images folder.
Remember, though:

• remove all spaces from image file names;
• try to use only lowercase letters in file names (for one thing, Sigil

alphabetises file names differently according to the case of the letters);
• only use jpg or gif images (png is usually also okay);
• before adding, make sure the images are 72 to 150 dpi, large but not larger

than 1000px on their longest side, and saved in RGB colours, not CMYK.

Add an image tag
Now, head back to your HTML document to add an image tag
where the image must appear. Image tags must always include two attributes:

• src for source, indicating the image file you just added, and
• alt for alternative text, which appears if the image breaks and is read out

loud is reader for the visually impaired.

An image tag can also include a title attribute, which provides more info
about the image. Many ereaders show the title as a tooltip when a user
mouses over the image.

Finally, the image tag must self-close with a slash.

working with images 23

Here’s an example:

<img src="../Images/example.jpg" alt="Example
image" title="An example of an image in an ebook"
/>

Done! Switch back to book view to check that it’s displaying correctly.

Image sizes and styles
Images vary in size and are portrait or landscape or square. So are the screens
they appear on. This means you will need to experiment with CSS styling for
your images to make sure they display reliably on various screen sizes and
orientations. Usually, this means working with max-width and
max-height rules in your CSS.

Sometimes you’ll need to create a couple of classes for different kinds of
images in your book. For instance, little marginal decorations might be in a
margin-decor class, while big, important graphics might be in an
important-graphic class. Remember to create class names that

describe the purpose of a given kind of image, not its appearance.

Captions and figures
If your images have captions, you should have two options:

• Make the captions paragraphs immediately before or after the image (you can
make them <p class="caption"> to style them); or

• Use the HTML for a <figure> element.

But the second option, using <figure> doesn’t work in Sigil. Still, it’s
useful to know about it, in case Sigil allows for it in future, or in the event
that you use another epub editor that does allow it.

The <figure> element wraps an image and its caption together. This is
useful for styling, and also for keeping the image and its caption, marked up

24 working with images

with <figcaption> , on the same page. The HTML for a figure looks like
this:

<figure>
<img src="../Images/myimage.jpg" alt="My pretty

image" />
<figcaption>This is a beautiful

picture.</figcaption>
</figure>

But if your ebook files are XHTML (rather than HTML), the <figure>
element is not allowed. By default, Sigil uses XHTML, so <figure>
doesn’t validate. (And, no, in Sigil you can’t manually change your DOCTYPE
(to <!DOCTYPE html>) because Sigil likes to clean your code, and
changes it back.) When Sigil supports EPUB3 in future, this won’t be an issue.

working with images 25

Links
A link is clickable text or a clickable image that, when clicked, takes the
reader somewhere else. There are two kinds of links in an ebook:

• internal links, which point to other locations in the ebook;
• external links, which point to websites.

Internal links are most commonly used for cross-references and footnotes.
External links for further reading (or watching and listening, as the case may
be). External links will almost always open in a separate program, like a web
browser or app. For instance, if you’re reading an ebook on a smartphone and
click a link to a YouTube video, the video will open either in the phone’s
default web browser, or in the YouTube app if it’s installed.

In HTML, internal and external links look very similar. First, I’ll explain how
they work. Then I’ll show you how to add them really easily in Sigil.

External links
Let’s start with a basic external link:

This link
points to EBW's website.

As you can see, a link consists of:

• an anchor tag <a>
• with one attribute, the href , or hyperlink reference.

The opening <a> and closing tags enclose the text that will be
clickable in the ebook, like this:

This link points to EBW’s website.

links 27

http://electricbookworks.com

Internal links
Let’s create an internal link in this document to the ‘Working with images’
chapter. The HTML will look like this:

Click here to go to the
'Working with images' chapter.

When rendered, this will look like this in the ebook:

Click here to go to the ‘Working with images’ chapter.

As you can see, jumping to the start of another HTML file is easy, you just
use the file name as the href value, e.g. href="filename.xhtml" .

But what if we want to jump to a specific point in a chapter? For instance, to
a specific element like a paragraph or heading or image? We have to mark
that destination element somehow, so that we can point an href to it.

We do this by giving the element an ID. This is easy to do:

• make up an ID name (it must be unique in that HTML file),
• use no spaces, avoid capital letters, and don’t start with a number, and
• include it as an attribute in the element’s opening tag, like this: <p
id="bobsyouruncle">

Then, when we make our link, we use that ID as the href , joined to the file
name with a hash sign:

Click here to
go to the specific paragraph I'm linking to.

If you’re linking to another place in the same HTML document, you don’t
even need the file name. You could just use a hash sign with the id :

This goes to a point in this
same HTML doc.

So link paths are relative to the file they’re in.

28 links

Clickable images
It can be really useful to make an image clickable. To do this, you just wrap
the <a> element around the element, like this:

However, some ereaders, including some versions of Adobe Digital Editions,
don’t support clickable images, which is annoying. So use them, but don’t
rely on them to work 100 per cent, every time.

Adding links with Sigil
Sigil can create the link code for you. Whew!

• Highlight the text you want to make clickable.
• Go to Insert > Link… .
◦ If you’re creating an internal link, pick a target from the list. Sigil lists all the

HTML files and IDs in the book.
◦ If you’re creating an external link, paste the full URL in the Target field.

• Click ‘OK’

If you’re linking internally, and the element you want to link to isn’t in the
Targets in the Book list, you need to give that element an ID before

linking to it. To do this:

• go to the element you’re linking to, and highlight it;
• go to Insert > ID… ;
• make up an ID (no spaces, don’t start with a number, and avoid uppercase

letters);
• click ‘OK’.

Now that element’s ID will be listed in the Targets in the Book list
when you insert a link.

links 29

Metadata
Metadata is information about information. For instance, your driver’s licence
is metadata about you.

Epub ebooks must store some information about themselves so that machines
know how to deal with them. You have to provide some of this metadata.
Some metadata applies to the epub as a whole, some to specific files, and
some even to specific elements inside files.

TECHNICAL NOTE
Book-level and document-level metadata is actually stored in a special file called
content.opf . Sigil will let you edit that file directly (just double-click it on

the left), but editing it directly is not a good idea. You do not want to break
something. Rather use Sigil’s metadata editing tools.

Book-level metadata
Just to be a valid epub, epub-level metadata must include:

• an identifier (like an ISBN)
• the publisher’s name
• a date of publication or creation.

It’s also best practice to include:

• the title
• an author.

To add this metadata in Sigil, just go to Tools > Metadata Editor .

Document-level metadata
In your epub you’ll have a bunch of HTML files, and each will likely
correspond to a part of a book: cover, title page, copyright page, preface, and
so on. If an ereader knows which HTML file represents each book part, it can
do useful things. For instance, the first time you open an ebook, most good

metadata 31

ereaders will jump you straight to the first chapter, skipping all the
frontmatter. That’s if it knows which HTML file is the first chapter.

Sigil lets us set this information as document-level metadata. Just right-click
each HTML file and go to Add Semantics… then tick the book-part that
corresponds to that chapter.

Only one file can correspond to each book part. And the most important
semantic tag is the one Sigil calls ‘Text’. That’s the file that ereaders will jump
to on first opening a new ebook.

In addition to adding semantics for HTML files, you must also add semantics
for the cover image, usually cover.jpg , in your Images folder. Right-
click the image file and select Add Semantics > Cover Image . This
tells ereaders to use that image in its Library display, which is very important
to users.

Element-level metadata
It’s rare that you’d deliberately add metadata to elements within files, such as
specific paragraphs or phrases, because you really don’t have time or a clear
need for it. But do keep in mind that it’s possible, so that you can experiment
with possibilities. For instance, imagine if you were creating a travel guide,
and you marked up each phone number – for guest houses, museums,
restaurants – like this:

+27 21 671 1278

Ereaders could use this tagging to recognise phone numbers and let you dial
them from your smartphone with a single click.

If you’re curious about the possibilities, read up online about ‘microdata’.

32 metadata

http://schema.org/telephone
http://en.wikipedia.org/wiki/Microdata_(HTML)

Tables of Contents
In an ebook, the table of contents can take two forms:

• a ‘Contents’ page among the book’s opening pages, as in a print book;
• a navigation list displayed by the ereading software (e.g. a menu in a slide-out

panel or navigation screen).

It’s optional whether to include a ‘Contents’ page. I generally avoid it,
because it’s extra work and an ereader’s navigation menu is usually easier to
use while reading. If you do create one, it’s essentially a list of headings in the
book, each hyperlinked to the relevant point in the book.

The navigation list, however, is mandatory. You store this list in a special file
listing links to chapter or other headings in the book. Each ereader displays
this table-of-contents list in a different way: for instance, as a navigation bar,
a slide-out panel, a menu list, and so on.

At this point, the way we create the navigation list depends on whether we’re
creating epubs according to the EPUB2 or EPUB3 spec. Right now, Sigil only
supports EPUB2. So we’ll start there.

EPUB2 tables of contents
In EPUB2, you store the navigation list in a toc.ncx file (toc for Table
of Contents, of course). You can see this file in Sigil, but you do not want to
edit it yourself. The syntax is a real headache. Let Sigil code the toc.ncx
file for you: use Tools > Table Of Contents > Generate
Table Of Contents… to create and edit it.

Note that Sigil generates the TOC by collating all heading elements, from
<h1> to <h6> . You can edit this manually in the TOC editor, but try to

keep edits to a minimum. Ideally your heading levels should be so well-
constructed that editing isn’t necessary.

tables of contents 33

EPUB3 table of contents
In EPUB3 you store the navigation list in a dedicated XHTML file with any
name you like. It’s common to call it nav.xhtml , and to refer to it as the
toc nav . You can then choose whether or not to include this XHTML file

as content in your book – that is, as a ‘Contents’ page among the book’s
opening pages. (Technically speaking, the file is always listed in the OPF
manifest , but only included in the spine if it must appear in the book

content.)

We aren’t going to go into detail about how to create that file here, since
we’re focusing on EPUB2 with Sigil. But you can read up about it online if
you’re curious.

TECHNICAL NOTE: EPUB3 WITH EPUB2 FALLBACK
The EPUB3 specification allows for an epub to include a toc.ncx file as a fallback
for ereaders that don’t support EPUB3’s EPUB Navigation Document. Hopefully,
when Sigil becomes EPUB3 capable, it’ll provide this fallback automatically.

Further reading: EPUB 3 Best Practices
If you want a great reference book, go get EPUB 3 Best Practices from O’Reilly
Media.

34 tables of contents

http://epubzone.org/news/epub-3-navigation
http://www.idpf.org/epub/30/spec/epub30-publications.html#ncx-superseded
http://shop.oreilly.com/product/0636920024897.do

Covers
There are many ways to create a cover in an epub ebook. You could just place
an image in the first HTML file in the epub. But we generally get better-
looking results with some very specific code.

Prepare the image
Get the front cover as a jpg image, name it cover.jpg, and add it to the
Images folder of your epub.

To tell ereaders that it’s the cover image, right-click it, select Add
Semantics , and tick Cover Image . (Some ereaders won’t display the
cover in their library view unless you do this.)

Create the cover HTML
Next, add a new HTML document to your Text folder, and click-and-drag
it so that it’s the first HTML file in the list. Name the file ‘cover.xhtml’.

Now, in the Code View of that file, replace the <head> and <body>
elements with this code:

<head>
<title>Cover</title>
<link rel="stylesheet" type="text/css"

href="../Styles/styles.css" />
</head\>

<body class="cover">
<p class="cover">

<img class="cover" alt="Cover"
src="../Images/cover.jpg" />

covers 35

</p>
</body>

Change the name of the CSS file here if yours isn’t called styles.css .

Add the cover to CSS
Finally, add this code to your CSS file:

* Styles for cover.xhtml *
body.cover {

margin: 0;
padding: 0;
text-align: center;

}
p.cover {

margin: 0;
padding: 0;
text-align: center;

}
img.cover {

height: 100%;
margin: 0;
padding: 0;

}

That should do the trick on most good ereaders. Like every piece cover code
I’ve found, it won’t work perfectly everywhere.

You can find more technical detail about covers on the EBW Knowledge Base.

36 covers

http://electricbookworks.com/kb/creating-epub-from-indesign/after-indesign-export-to-epub/add-a-cover/

Testing and validation
Ebooks should be thoroughly checked, sometimes even proofread, just like
print books. There are two parts to checking ebooks:

1. validating the code, and
2. checking the ebook on ereaders.

Validating the code
Sigil includes a useful validation tool that checks the technical correctness
(validity) of your epub file. (It’s called ‘FlightCrew’.) Go to Tools >
Validate EPUB with FlightCrew or hit the green tick button. If
there are technical errors, Sigil will give you a list of them, and you can click
on the items in the list to jump to the problem.

Checking on ereaders
Always, always test on a few different ereaders, and scroll through the whole
book for a visual check. We recommend that you try to test on:

• a good reading app on a tablet and/or phone like iBooks, Google Play Books,
Aldiko;

• a web-based reader like Google Play Books or Ibis Reader, or in Firefox using
the EpubReader addon;

• Adobe Digital Editions on a computer (ADE has lots of problems, but it’s still
the biggest computer-screen ereader next to Kindle);

• an e-ink reader (e.g. Sony, COOL-ER, BeBook, etc.).

These tests should include a device with a small screen (less than, say, 5”
diagonal; this can detect various formatting problems) and one with a large
screen (above, say, 19”; this can detect low-res covers and missing page
breaks).

A range of options like this will usually also include a device with an Adobe
engine (i.e. one based on the Adobe Reader Mobile SDK, such as Sony

testing and validation 37

Readers and B&N Nook), and a device with a WebKit engine (e.g. Ibis Reader,
iBooks).

38 testing and validation

On advanced tricks and
bug fixing
In this course we rarely get to talk through advanced tricks and serious bug
fixing. Those are things you’re going to have to tackle when they arise.
Things that’ll come up at some stage:

• Mathematical notation: this is a real headache. usually, the only solution is to
include images for every instance of maths.

• Sub-titles: note that <h2> can’t be used as a sub-title to <h1> , because
<h2> is a second-level of heading in the hierarchy, and signals the start of a

new sub-section. Sub-titles usually have to be paragraphs with a special class,
like p.h1-subtitle . Or just run them onto the h1 with a colon, e.g.
Chapter 1: We set out early .

• Transparency in images: gif and png images can have transparent areas. So if
you have black line art, do you make your backgrounds white or transparent?

◦ On sepia-background ereaders, images with white backgrounds look ugly, but
◦ on white-text-on-black ereader settings (aka ‘night mode’), black line art on a

transparent background will be invisible.

• Embedding or linking to video: this is a real headache that you should read
more about online.

Many other challenges await you. Always search and ask online, because
someone out there has probably faced them before. And when you hit on a
solution, be sure to share it to help others.

on advanced tricks and bug fixing 39

http://electricbookworks.com/kb/epub-production-tips/embedding-video-and-audio/
http://electricbookworks.com/kb/epub-production-tips/embedding-video-and-audio/

Your feedback
Training in a new, fast-changing field is hard, so we really need your honest
feedback about this course. You can give very brief answers, though the more
you can tell us the the better. You’re welcome to answer anonymously.

1. Given your expectations before the course, did you learn what you wanted to
learn?

◦ Exactly what I wanted.
◦ Mostly what I wanted.
◦ Um. A bit of both.
◦ Only a little of what I wanted.
◦ Not at all what I had in mind.

2. What was the best thing about the course?
3. What about the course most needs to change?
4. Do you have suggestions for how to fix that?
5. We know these courses are expensive. For you, was the expense:
◦ worth the investment,
◦ too early to tell, or
◦ not really worth it?

6. What did you think of the venue?
7. Assuming you had a positive experience, do you have any comments we

could use publicly?

Feedback forms are a schlep, so thank you, really. Pop in at EBW for thank-
you coffee any time.

http://goo.gl/forms/GW3tfIkXVK
http://goo.gl/forms/GW3tfIkXVK
http://electricbookworks.com/contact

	Contents
	Course outline
	HTML, or ‘How to Talk a Machine’s Language’
	Elements
	Classes
	IDs
	HTML document structure
	XHTML

	Stylesheets
	Linking HTML and CSS files
	Challenge
	Sample stylesheet

	Working with images
	Add the image file
	Add an image tag
	Image sizes and styles
	Captions and figures

	Links
	External links
	Internal links
	Clickable images
	Adding links with Sigil

	Metadata
	Book-level metadata
	Document-level metadata
	Element-level metadata

	Tables of Contents
	EPUB2 tables of contents
	EPUB3 table of contents
	Further reading: EPUB 3 Best Practices

	Covers
	Prepare the image
	Create the cover HTML
	Add the cover to CSS

	Testing and validation
	Validating the code
	Checking on ereaders

	On advanced tricks and bug fixing
	Your feedback

